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The problem of the coupling of translational and reactive dynamics is 
investigated in terms of a simple lattice model. A master equation descrip- 
tion including repulsive and reactive interactions is analyzed in terms of a 
boundary layer region and reduced to source term equations at the diffusion 
level. Comparison is made at this level with boundary condition approaches. 
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1. I N T R O D U C T I O N  

Interest in the theoretical description of  chemical reactions in condensed 
phases has recently been stimulated by a number of  developments. Picosecond 
spectroscopy a~ and C I D N P  experiments ~2~ promise the ability to resolve fast 
reactive events at a more detailed level than previously accessible. Computer  
experiments ~a,4~ for modeled reactive systems are beginning to provide even 
more detailed information on motional and reactive processes. Finally, the 
emergence of tractable statistical mechanical descriptions of  motion in fluids 
(see, e.g., Ref. 5) allows the beginning of investigation of these complex 
processes. 

Adequate descriptions of such reactions will involve the coupling of 
translational (and internal) motion to reactive dynamics. One possible starting 
point involves the complete microscopic equations of  motion for the many- 
body systemJ ~ We choose, however, to approach the problem from the other 
direction by examining a sequence of increasingly more realistic models. In 
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this paper, we consider a simple lattice model for coupled translational and 
reactive dynamics. In a subsequent paper, we will consider a more detailed 
description involving a Fokker-Planck ~v'8~ level translational description 
coupled with a Kramers-type barrier crossing treatment. ~9~ The rationale for 
this direction of approach is twofold. First, even for the simple lattice model, 
a number of subtle questions arise regarding, e.g., location of boundaries and 
relevant time scales. Second, it is well known ~1~ that chemical rate equations 
and constants themselves involve a number of subtleties. We believe that these 
aspects are, at least initially, most clearly exposed and handled at a level of  
description other than the fully microscopic level. 

In this first paper, we restrict ourselves to obtaining a final description 
at the diffusion level only. We focus on the important questions that arise 
even in reaching this level. (For simplicity we work in one dimension, b u t  
generalization to three dimensions is immediate.) The diffusion level descrip- 
tion of reactions is, of  course, well known. (11~ In the standard formulation, 
homogeneous diffusion equations are supplemented by (often inhomogeneous) 
boundary conditions imposed on intuitive grounds. Two examples of the 
latter are (a) the "radiat ive"  boundary condition (BC) introduced by Collins 
and Kimball, (12~ which equates diffusive and reactive fluxes at a "reactive 
surface," and (b) the Smoluchowski (13~ condition that the distribution of 
particles vanish at such a surface. An alternate formulation, recently espoused 
by Wilemski and Fixman at the diffusion level, (~4~ is the source term approach. 
In our derivation, an equation of motion for reactive species is constructed to 
be valid in a region extended to include a "boundary  layer" in which homo- 
geneous equations break down due to the effects of short-range forces. In this 
way the effects of such forces appear explicitly in the dynamical equation as 
a source term [cf. Eq. (24) below]. Our construction of source terms involves 
a much more detailed analysis of short-range dynamics (within the context 
of the model) than the intuitive imposition of a BC. Indeed, we find that, even 
at the diffusion level of description, some intuitive BCs assumed in the past 
are not correct or must be qualified (cf. Section 5). 

Some advantages of a source term formulation itself are (i) it lends itself 
naturally to powerful formal methods of analysis closely related to those 
employed in the absence of boundaries(15~; (ii) for realistic descriptiofis of 
reactive-translational dynamics, a simple BC can be inadequate. For example, 
as pointed out by Wilemski and Fixman, (~4~ the coupling can be nonlocal in 
space. A source term approach can easily accommodate such generalizations; 
(iii) this approach may also be applied to more detailed descriptions, for 
example, at the Fokker-Planck level. (~6~ 

In this paper, we examine the derivation of source term equations for a 
simple one-dimensional model which includes short-range repulsion effects 
and reaction. The master equation governing various transitions is derived 
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and transformed, in appropriate limits, to a continuous equation of the 
diffusion form with reactive sources. In using a discrete lattice model we do 
not claim to provide an adequate description of  either translational or reactive 
dynamics. Our intention here is rather to derive the basic structure of a 
source term equation and elucidate its validity conditions. This study of the 
lattice model in fact serves as an extremely useful guide for the derivation of 
source terms for more realistic, and thus more complex, dynamical descrip- 
tions.(16) 

In Section 2 we present a derivation of the source term equation for 
diffusion for the case of two particles interacting via purely repulsive short- 
range forces. It is found that a source term appears even in the absence of 
chemical reaction. We also introduce here the basic ideas and techniques 
required in Section 3 for the case where chemical reaction can occur. In 
Section 4, Green's function techniques are utilized to transform the basic 
result into more convenient forms. Comparison with other treatments is given 
in Section 5. 

2. REFLECTING W A L L  S O U R C E  T E R M  

Here we consider the relative motion of  two particles interacting through 
purely Short-range repulsive forces and thus incapable of  reacting. We utilize 
a one-dimensional lattice model in which the dynamics are described by a 
discrete master equation (ME). This model (Fig. 1) consists of a discrete 
one-dimensional space of  points n = 0, 1, 2 ..... 0% which specify relative 

Fig. 1. Lattice model and associated repulsive potential 
(solid line). 
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positions of a particle pair. The probability of finding the pair at relative 
position n at time t is p~( t ) .  Transitions are allowed only between adjacent 
lattice points. In this relative coordinate system, we can speak in terms of one 
fixed particle and one moving particle. Some aspects of boundary conditions 
have been investigated on a related model by van Kampen and Oppenheim. (17) 

We identify certain lattice points with certain regions of interaction. The 
state n = 0 corresponds to a highly repulsive state of interaction; states n >1 1 
are noninteractNe. 

We begin by writing the ME for the probability p~ as 

dpn /d t  = rp~+l  + rpn_~ - 2rp~; n > 1 (1) 

Here r is the probability per unit time of a transition between adjacent lattice 
points (excluding transitions 0~-+ I). Equation (1) is restricted to points 
n > 1 ; the presence of the interaction region modifies the transition frequen- 
cies into and out of state n = 1. Due to repulsive forces, lattice points 
n = 0, 1 have the unique equations of motion 

dp~/d t  = rp2 + drpo - (1 + c)rp l  (2) 

dpo/d t  = crp~ - drpo (3) 

Here cr and dr are modified transition frequencies into and out of state n = 0, 
respectively. 

The ME for ordinarY points on the lattice breaks down at n = 1. We 
refer to this point as a boundary layer because its occupation dynamics are 
affected by short-range forces (even though no forces exist there). We are 
thus led to consider where the BC is actually applied in any continuous model. 
It should be clear that the boundary point in Eq. (1) is not a point where 
forces are strongly repulsive. It is, rather, a point at the surface of a boundary 
layer and outside the force region. 

We now wish to construct an equation valid not only for n > 1, but 
which also includes the boundary layer point n = 1. With the introduction 
of the Kronecker delta, Eqs. (1) and (2) can be combined to give 

dp~/d t  = rp~+~ + r p ~ - i  - rpn + 8~,~(rpl - rpo - crp~ + drpo); 

n > 0  (4) 

Equation (4) contains the usual ME terms as in Eq. (1) with an additional 
corrective source term contributing solely at n = 1. Equation (4) requires 
specification of an appropriate BC at the new boundary point n = 0; by 
solving Eq. (3), we obtain this as 

for p o ( t )  = po(O)e -a ' t  + d t '  e-a~t 'crp~(t  - t ' )  (5) 



Coupling of Translational and Reactive Dynamics 95 

Equation (4) is exactly the type of  equation sought. We are, however, 
ultimately concerned with continuous systems. We thus transform the dis- 
crete space variable n to a continuous variable x = nE, where e is an infinitesi- 
mal scaling length; it may be interpreted as the characteristic length previously 
represented by a lattice point. The probability p~(t) transforms to a prob- 
ability density P(x,  t) as p~(t) = EP(x, t) and the Kronecker delta transforms 
to a delta function 3n. 1 = ~3(x - E). With these definitions Eq. (4) is con- 
verted to the continuous equation 

OP(x, O/at = rP(x + e) + rP(x  - e) - 2rP(x) 
+ , ~ ( x  - , ) [ r P ( ~ )  - rP(O) - c r P ( , )  + drP(O)]; x > 0 (6 )  

Taylor expansion for small E then yields 

0P~t t t) 2 ~2p ~4 r a4p 
--' = ~ r~x2 + 12 Ox 4 + "'" 

+ 3 ( x - e ) [ , 2 r ( ~ ) , _ +  O(,a) + . . . .  cr,P(,)  

+ dreP(0)] ; x > 0 (7a) 

which can be rewritten more compactly as 

OP(x, t ) /e t  = La(e)P(x, t)  + 5#(x, t; E) (7b) 

The leading term in La(~)P, the expansion of ordinary transition terms, has 
the Fick's law diffusion form, where the (relative) diffusion constant D = e2r. 
The gradient term e2r(OP/Ox),_ in the source is evaluated in the interval (0, e), 
as indicated by the notation E - .  In the limit of small E, a discontinuity will 
exist in the gradient at x = e, and it becomes imperative to specify this 
evaluation point carefully (see Fig. 2). This will be discussed subsequently in 
greater detail. 

The c and d terms in 5r are respectively transition rates into and out of 
the repulsive force region. Together they represent the net flux J( t )  between 
the boundary layer and the repulsive region defined as 

J ( t )  = cr~P(~, t )  - dr~P(O, t )  = Js - d~ (8) 

Although these forward and reverse fluxes separately may be large, the net 
flux into a small repulsive region should vanish under conditions where 
repulsive encounters take place rapidly on the diffusion time scale. To see 
how this might come about, we first examine the magnitudes of the individual 
fluxes and then determine the behavior of the net flux J( t )  in the appropriate 
limit. 

The quantity cr is the transition frequency for the unidirectional transi- 
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Fig. 2. Distribution behavior in the interaction re- 
gion. Dashed line denotes the repulsive potential. 

tion from the boundary layer into the repulsive interaction region. This 
frequency should not differ too greatly from ordinary transition frequencies 
r in the medium, as a particle at x = e has no direct knowledge of the 
repulsive forces. For this reason, we expect c to be O(1). However, once the 
particle has encountered the repulsive forces, it will respond extremely rapidly. 
Thus, the exit transition frequency dr >> r. Just how much larger dr is than r 
will depend upon the details of the interaction region. Since the repulsive 
forces are localized in a length of O(Q, their magnitude tends to infinity as E 
tends to zero. Therefore, the factor d is appropriately scaled by the reciprocal 
of~  as d = A/E. 

To demonstrate how J ( t )  vanishes for small E, we require a closed form 
for J ( t )  in terms ofP(E, t). Equation (5) transforms as 

P(0, t) = P(0, 0)e -T~t/~ + cr d t '  P(E, t ' ) e  -<T~m(t-~'~ (9) 

so that, with the P(0, 0) -- 0 initial condition imposed, we obtain 

f; J ( t )  = J i ( t )  - d t '  k ( t  - t ' ) J1( t '  ) (10) 

Here the transition kernel 

k ( t  - t ' )  = (rA/E)exp[--(rA/~)(t -- t')] (11) 
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gives the contribution to the flux Jr(t) out of the interaction region arising 
from particles entering at a previous time t'. For small ~, k(t  - t') is a rapidly 
decaying function of the time t - t '  a particle spends in the interaction region. 
Indeed, to lowest order in E, k(t)  is a delta function in time. This confirms 
our expectations that a particle entering the interaction region returns to the 
boundary layer virtually instantaneously (on the diffusion time scale) when the 
extent of the interaction region is O(~). Thus, to lowest order in ~, the reverse 
flux Jr(t) = ft o dt '  8(t - t ')Ji(t ') cancels the forward flux Ji(t) to give a 
vanishing net flux J(t). Then, Eq. (7) may be written as 

aP a2P [ 2 / ~ P \  ] 
~-7 =~2r-Uxx2 + . . . +  8 ( x - - E ) [ ~ r ~ - ~ x ) ,  +.. .~; x > O  (12) 

Finally, to maintain consistency we write P(x,  t) as a power series in the 
small parameter so that 

P(x, t) = P(~ t) + ePm(x,  t) + ... (13) 

Defining a new time variable ~- = E2rt characteristic of the diffusion time scale, 
and using the expansion Eq. (13), we then obtain the following zeroth-order 
equation: 

~p~o) ~2p~o) /Op~o)\ 
= ~ + 3(x - , ) ~ ) , _  ; x > 0 (14) 

The retention of the delta function in an unexpanded form, while not totally 
consistent, signifies that the source term contributes in an ~ neighborhood 
to the right of the end point (x = 0) of the domain. 

Equation (14) is the desired inhomogeneous equation of motion. It must 
be provided with a consistent boundary value applied at the point x = 0. 
Since the repulsive interaction region contains this point, the probability of 
being found there should be essentially zero (at least on the diffusion time 
scale). We can explicitly establish the BC for Eq. (14) by transforming Eq. (9) 
for P(0, t) to time variable r to obtain [with P(0, 0) = 0] 

P(O, z) = (c/e 2) d-/ P(e, r') exp[ -  (A/E3)(r -- r')] (15) 

If  we introduce the Laplace transform of Eq. (15), then 

if(O, s) =- d~ e-"~P(O, .) = Ecff(e, s)/(A + Eas) 

= ~(c /A)P(~,  s) + o(~ ~) (153 

where we have used the convolution theorem and expanded in E. The distribu- 
tion P(0, r) in time then has the power series representation 

P(O, r) = e(c/A)P(e, r) + O(,') + ..- (16) 
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Expartsion of the distribution according to Eq. (13) gives the zeroth-order BC 
for Eq. (14) as the expected result 

P(~ r) = 0 (17) 

After suppression of the superscripts for convenience and conversion 
back to time t, the final result of the ME treatment of the repulsive wall case 
can be written as 

OPo__.t ~a2P ~ D / a P \  ' = D + 8 ( x -  ) ~Fxx),_ x > 0 ;  P(0, t ) = 0  (18) 

It can be shown via integration that the reflecting wall source term 
8(x - ~)D(aP/~x),_ conserves probability in the domain of the equation. 
This term appears even in the absence of reaction, and arises solely from 
repulsive forces. 

It may seem paradoxical to obtain what appears to be the same BC used 
by Smoluchowski (la) to treat reactions which proceed with virtual certainty 
when reactive particles encounter. This treatment invoked a vanishing BC 
on a particular reaction surface to absorb particles from the system. However, 
this surface was taken to be in what we consider the boundary layer and thus 
implies a reactive loss rapid on the diffusion time scale (cf. Section 4). The 
vanishing BC on Eq. (18), on the other hand, is invoked at a point deep within 
the repulsive force region, where we can reasonably expect the probability 
density to always vanish. 

Although both BCs discussed above have fundamentally different inter- 
pretations, upon implementation they both absorb particles from the system 
on their respective surfaces. The BC on Eq. (18) generates a flux out of the 
system, whose magnitude is given by the reflecting wall source term. Prob- 
ability conservation is maintained, however, since the source term instan- 
taneously injects these particles back into the boundary layer. Thus it is 
crucial to evaluate the gradient in the source term in the interval (0, e)as  
previously noted, and hold its contribution point at x = e. 

Equation (18) is a formulation equivalent (1B'19) to the following homo- 
geneous equation with "reflecting wall" BC: 

02e ] aP D - -  x > e; D[ aP a--t = ax 2' \Tx] ,+  = 0 (19) 

It is important to note that the gradient in the BC of Eq. (19) is evaluated to 
the right of the discontinuity at x = ,, in contrast to the reflecting wall source 
term (see Fig. 2). This ensures zero net flux through the point x = E in the 
limit of fast events within the repulsive region. The boundary point in Eq. 
(19) is outside the repulsive region. This is consistent with our previous dis- 
cussion of the general features of boundary value formulations. 
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Finally, we note that, although repulsive forces lead to a source term, the 
transition frequencies cr and dr characteristic of  these forces do not appear 
explicitly in this term. 

3. I N C L U S I O N  OF REACTIVE T E R M S  

We now allow for a reversible reaction, again through short-range inter- 
actions. A particle at n = 1 making a transit ion to the left now has two 
possible fates: (i) it may proceed to form a stable reacted state (with a lifetime 
nonnegligible on the diffusion time scale); (ii) it may encounter conditions 
unfavorable for reaction and quickly return to the boundary layer, as anti- 
cipated in Section 2 (there, all particles were on unreactive trajectories). 
Figure 3 gives a schematic illustration. 

The inclusion of  reaction requires a reinterpretation of the discrete 
lattice state n = 0, which, in the absence of reaction, was unambiguously 
interpreted as an extremely short-lived, high-energy repulsive state. Here we 
consider the state n = 0 to be one of interactive encounter on unreactive 
trajectories. Thus, P0 is the (conditional) probability of  finding the particles 
interacting given that they will ultimately (but rapidly) fall apart rather than 
attain a stable configuration on that particular encounter. For example, a 
particle encountering a potential barrier without sufficient energy to cross 
will return to the boundary layer as rapidl~r as if the barrier had no maximum. 
Therefore, with this change in interpretation, we may treat lattice state n = 0 
exactly as in the purely repulsive case. 

li\\ 

o n 

Fig. 3. Model for reversible reaction case. (--) Potential energy; ( - - - )  effective potential 
for nonreacting particles. The point n = 0 is associated with this potential (see text). 
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The quantity p ,  is now the probability of finding the system u n r e a c t e d  

in state n. We further define Prx as the probability of finding the system in a 
reacted state accessible only via transitions from n = 1. With these definitions, 
we may write the following ME for pl (the only modified equation) to replace 
Eq. (2): 

d p l / d t  = rp2 - r p l  - c r p l  + drpo - arp~ + brP~x (20) 

The new terms with frequency factors a and b represent, respectively, the 
forward and reverse unidirectional fluxes between stable separated (n = 1) 
and stable reacted states. The quantities a r  and b r  then have the nature of 
conditional phenomenological rate constants, i.e., frequencies for particles 
leaving one stable state and attaining another stable state on a reactive 
trajectory when a steady-state condition exists over the intermediate states. 

The source term ME valid in the boundary layer and at ordinary lattice 
points is 

d p . / d t  = r p . + ~  + r p . _ ~  - 2 r p .  + 3. ,1(rp2 - rp~ - crp~ + drpo 

- a rpz  + brPrx ) ;  n > 0 (21) 

Equation (21) is transformed to a continuous equation in a fashion analogous 
to Eq. (4), with one exception. The reacted state remains as a discrete state 
outside the unreacted domain. The continuous equation for the reactive case 
is thus 

OP/Ot = L a ( , ) P  + 3(x - , ) [ ,2r (OP/Ox)~_  + . . . .  J ( t )  

- a r , P ( c )  + brPrx];  x > 0 (22) 

where J ( t )  is the net unreactive particle flux given by Eq. (8). 
We note that the reactive terms in Eq. (22) appear to be intrinsically 

orders of magnitude larger than the leading terms in the diffusion operator 
and the reflecting wall source term. Indeed, unless the frequency factors a 
and b are small, the net reactive flux J,x = ar~P(~)  - brPr~ will have much the 
same characteristics as J ( t ) .  There would be an instantaneous local equilibrium 
between the boundary layer and the reacted state which would cause Jr~ to 
vanish on the diffusion time scale, This might correspond to the case where the 
potential well has a depth O ( k B T )  (e.g., Ar-Ar),  but the reacted state would 
certainly not conform to the chemical idea of a stable state. For the reactive 
terms to survive, the frequency factors must necessarily be small. We first 
examine this feature for the forward reaction. 

The quantity a will be O(1) when reactive transitions are nearly as 
frequent as encounters. As noted above, however, the probability of reaction 
upon encounter  must be small in order for reactive events to enter the 
dynamics explicitly on the diffusion time scale. We therefore scale the 
frequency factor for the forward reaction by a small dimensionless parameter 
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as a = ~K. We require that K = O(e) for the forward reactive flux to be 
of the same intrinsic magnitude as other leading terms in Eq. (22). There are 
a number of important situations where (reaction frequency/encounter 
frequency) << 1. (i) An activation barrier between separated and combined 
molecular fragments will selectively repel low-energy particles. (ii) Due to 
improper angular orientation, reactions between rotationally asymmetric 
fragments may not always proceed. 

For the reverse reaction, b must also be intrinsically small so that this 
reaction is sufficiently slow to enter the dynamics on the diffusion time scale. 
(This might correspond to the case in which the depth of the potential well is 
>>kBT.) However, Eq. (22) shows that dissociation rate reduction by a single 
order of magnitude will be insufficient for this purpose. That b must be scaled 
by the frequency parameter K is clear, but, in fact, another order of magnitude 
is intrinsic in b. In the discrete model, br is a transition frequency from the 
reacted state to n = 1. After transformation to a continuous system, br is 
the transition frequency to an infinitesimal region of  width e; the frequency 
factor b is approximately a linear function of the region width E. We introduce 
both scale factors for b in one definition as b =/3Ke. The continuum-limit 
inhomogeneous equation is then obtained to lowest order in E as 

= + - + , > o ;  

P(~ r) = 0 (23) 

Naturally, the inclusion of  a reaction has no effect on the BC. 
Transforming Eq. (23) back to time variable t and dropping super- 

scripts for convenience, we obtain the desired result 

OP D O2P 
0-7 = ?Vx ~ + a ( x  - , )  ?--dx , _  O; 

P(0, t) = 0 (24) 

Here the forward and reverse rate constants are k r = (~K)rE and kr = (/3~e)r. 
Equation (24) may also be written solely in terms of P by eliminating Prx in 
terms of P(e, t). With the initial condition P,x(0) = 0, the reactive flux J~x(t) 
in the source can be rewritten as 

Jr#(t) = k1P(~, t)  - klk~ dr' P(e, t - t ' ) e -~ ,  t" (25) 

Our result can be readily generalized to include internal states of  the 
reacted species. Its basic structure remains unchanged as long as time scale 
consistency is maintained. 
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4. ALTERNATE R E P R E S E N T A T I O N S  V IA  
GREEN'S  F U N C T I O N S  

Equation (24) contains, as a consequence of short-range repulsive forces, 
a gradient of the probability in the source term. This particular formulation 
proves to be inconvenient (see below). Therefore, we consider here alternative 
representations. 

We first introduce the Green's function Ga defined by 

8Ga(x, x ' ,  t) D ~2G~ 
St = ~x 2 + ~(x - x') 3(0; G=(0, x ,  t) = 0 (26) 

and whose explicit form is 

G~(x, x', t) = (4~-Dt)-lI2[exp( - Ix - x'12/4Dt) - exp( - I  x + x'[2/4Dt)] (27) 

With this function the formal solution to Eq. (24) can be written as (18,19~ 

P(x,  t) = dx'  G.(x ,  x ' ,  t )P(x ' ,  0) 

+ dt '  G~(x, ~, t - t ' )[D (OP/Ox'),_ - Jrx](t') (28) 

The term arising from the reflecting wall source is 

T = dt '  Ga(x, ~, t - t ')D(OP/Ox'),_ (t ')  

Its presence requires evaluation of a gradient within the source term, rather 
than simple evaluation of P at a point. In addition, one would like, if possible, 
to have only the reactive flux as a source. This may be accomplished by 
eliminating T from Eq. (28) by rearranging to give a construction in terms of 
a new Green's function Grt. (Details are given elsewhere(~9~; the evaluation of 
the reflecting wall source term in the appropriate interval (0, ~) is crucial in 
obtaining the desired form.) Equation (28) then reduces to the basic result 

P(x,  t) = dx'  Gr1(x, x ' ,  t )P(x ' ,  O) 

f2 + dt '  Gri(x, E, t - t ' ) [ -J~x( t ' )]  (29) 

The new Green's function GTr satisfies the reflecting wall BC at x = 0 in the 
limit as ~--> 0. The effect of hard-core repulsion is now contained in Grr, 
which describes the diffusive motion of two impenetrable particles. Equation 
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(29) is identically (18,19~ the formal solution to the alternate inhomogeneous 
equation 

OP(x, t) /Ot = LaP  - 3(x - ~)J,x(t) ,  x > E -  ; D(OP/Ox),_  = 0 (30) 

solved with the reflecting wall Green's function Gr~. a At a more formal level, 
Eq. (29) can be regarded as the solution of 

OP(x, t ) /~ t  = L~.aP - 3(x - e)Jrx(t ) (31) 

with no imposed BC, where Lr,a is the dynamical operator for diffusion with 
short-range repulsion. This last form is, in fact, the most convenient for 
analysis. For  example, we show elsewhere at~ from Eq. (31) and projection 
operator techniques that the "closure approximation" of  Wilemski and 
Fixman (~4~ is, in fact, exact for local reactive sources. Finally, we note that 
the solution to the equivalent Eqs. (24), (30), and (31) reduces, in the limit of 
reaction fast compared to diffusion, to the Smoluchowski absorbing BC 
solution, aa) 

5. C O M P A R I S O N  WITH OTHER RESULTS 

While there is no treatment in the literature at the level of our deriva- 
tions, we can compare some of our resulting equations with those of others. 
These comparisons serve to illustrate the usefulness of detailed examination 
of repulsive force effects, boundary layers, and time scale considerations. 

Wilemski and Fixman (14) have written (without derivation) a reactive 
source equation of  the general form 

OP/Ot = L a P  + Srx (32) 

where La is a generalized diffusion operator and the reactive source Srx 
vanishes in the absence of reaction. As we have seen, such an equation is 
acceptable (cf. Sections 2 and 4) only if La is understood to include a term 
which prevents particles from diffusing through each other. ~ 

If  there is no reverse reaction, our result Eq. (24) is equivalent ~1~,19) to 
the formulation utilizing the ordinary diffusion equation with the radiative 
BC (here in one dimension) 

D(~P/~x) ,+  = k ,P(E,  t )  (33) 

For this case (as well as for reversible reactions), we have established the 
location of this boundary, elucidated the time scale requirements for repulsive 
force effects, and emphasized the slow reaction requirement for its validity. 

3 G,r is given by Eq. (27) with plus replacing minus between the exponentials. 
Wilemski and Fixman do not appear to make reference to the existence of such a 
term, but it is accounted for in later work3 z~ 
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In this latter connection, we note that some aspects of  this requirement have 
been discussed by Collins and Kimball  (12~ and Goodrich. (21~ 

For  the reversible reaction case, Eq. (24) is equivalent (x8"~9~ to the 
problem in which the BC 

D ( ~ P / S x ) , §  = kr t)  - krPrx(t)  (34) 

is imposed on the ordinary diffusion equation. A similar BC is quoted by 
GoodrichC2~) without derivation. Equation (34) differs from the BC quoted by 
Schurr, ~22) in which no time dependence appears in the reverse reaction term. 

Monchick ~z3) has presented an interesting version of a radiative BC to 
account for the delay time in return of particles from the interaction region 
on unreactive trajectories. The flux across reactive surface S is written (in our 
notation and in one dimension) as 

D(Oe/~x)s  = const • [P(S ,  t )  - KP(S,  t - z)] (35) 

where K is the fraction of particles crossing S at time t - r which return 
at time t. This is similar in spirit to our treatment in the sense that it accounts 
for the fate of  all particles entering the interaction region from points outside. 
An important  consequence of a single finite delay time is, however, the 
prediction of oscillatory behavior in the reactive flux Jrx(t). We disagree with 
this conclusion and with two features of Monchick's analysis. 

First, the characteristic delay time of unreactive particles is taken to be 
finite on the diffusion time scale. This lifetime, however, will not be finite 
under ordinary circumstances, and thus should not appear in the radiative 
BC or corresponding source term. A second difficulty is the absence of any 
restriction (which we previously considered) on the magnitude of the reaction 
probability per encounter. 

One might think that the time delay could correspond to the finite life- 
time associated with a stable state in a reversible reaction. However, Eq. (35) 
does not have the convolution form [Eq. (25)] we have found; the true loss 
rate for the stable state population is of  the form k r P ~ ( t )  rather than of the 
form KP(s, t - ~) associated with a single lifetime. 
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